Molecular diagnostics of acute myeloid leukaemia

      Abstract

      The laboratory diagnostic work-up of acute myeloid leukaemia (AML) has evolved from a largely morphology-based approach to algorithms that integrate clinical data as well as results obtained by immunological and molecular techniques. With the continued development of targeted therapies, the role of molecular diagnostics will continue to become increasingly important with regards to prognosis, selection of and prediction of response to treatment strategies, and monitoring of minimal residual disease. In this review, we provide an overview of currently used diagnostic algorithms for AML and discuss key laboratory issues relevant to sample handling and core molecular diagnostic technologies. We highlight the most commonly observed chromosomal anomalies and gene mutations associated with AML, and discuss their clinical, diagnostic, prognostic and predictive significance. Finally, we highlight microarray technology and its application in expression profiling of mRNA and microRNAs, and stress the importance of validating gene signatures in prospective studies before they can be incorporated into routine laboratory diagnostics.

      Keywords

      To read this article in full you will need to make a payment

      References

      1. Vardiman JW, Brunning RD, Arber DA, et al. Introduction and overview of the classification of the myeloid neoplasms. In: Swerdlow SH, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC; 2008. p. 18–30.

        • Deschler B.
        • Lubbert M.
        Acute myeloid leukemia: epidemiology and etiology.
        Cancer. 2006; 107: 2099-2107
        • Yamamoto J.
        • Goodman M.T.
        Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997-2002.
        Cancer Causes Control. 2008; 19: 379-390
        • Bennett J.M.
        • Catovsky D.
        • Daniel M.T.
        • et al.
        Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group.
        Br J Haematol. 1976; 33: 451-458
        • Brunning R.D.
        • Matutes E.
        • Harris N.L.
        • et al.
        Acute myeloid leukemia: introduction.
        in: Jaffe E. Harris N.L. Stein H. Vardiman J.W. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC, Lyon2001: 75-80
        • Nowell P.C.
        • Hungerford D.A.
        Chromosome studies on normal and leukemic human leukocytes.
        J Natl Cancer Inst. 1960; 25: 85-109
        • Rowley J.D.
        Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining.
        Nature. 1973; 243: 290-293
        • Rowley J.D.
        Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia.
        Ann Genet. 1973; 16: 109-112
        • Bitter M.A.
        • LeBeau M.M.
        • Rowley J.D.
        • Larson R.A.
        • Golomb H.M.
        • Vardiman J.W.
        Associations between morphology, karyotype, and clinical features in myeloid leukemias.
        Hum Pathol. 1987; 8: 211-225
        • Grimwade D.
        • Walker H.
        • Oliver F.
        • et al.
        The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties.
        Blood. 1998; 92: 2322-2333
        • Arber D.A.
        • Brunning R.D.
        • Le Beau M.M.
        • et al.
        Acute myeloid leukaemia.
        in: Jaffe E. Harris N.L. Stein H. Vardiman J.W. World Health Organization classification of tumours: pathology and genetics of tumors of haematopoietic and lymphoid tissues. IARC Press, Lyon2008: 75-107
        • Lam N.Y.
        • Rainer T.H.
        • Chiu R.W.
        • Lo Y.M.
        EDTA is a better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis.
        Clin Chem. 2004; 50: 256-257
        • Ghadessy F.J.
        • Ong J.L.
        • Holliger P.
        Directed evolution of polymerase function by compartmentalized self-replication.
        Proc Natl Acad Sci U S A. 2001; 98: 4552-4557
        • Lee A.C.
        • Dai Z.
        • Chen B.
        • et al.
        Electrochemical branched-DNA assay for polymerase chain reaction-free detection and quantification of oncogenes in messenger RNA.
        Anal Chem. 2008; ([Epub ahead of print Nov 13 2008])
        • Bramwell N.H.
        • Burns B.F.
        The effects of fixative type and fixation time on the quantity and quality of extractable DNA for hybridization studies on lymphoid tissue.
        Exp Hematol. 1988; 16: 730-732
        • Vaught J.B.
        Blood collection, shipment, processing, and storage.
        Cancer Epidemiol Biomarkers Prev. 2006; 15: 1582-1584
        • Elliott P.
        • Peakman T.C.
        The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine.
        Int J Epidemiol. 2008; 37: 234-244
        • Costa J.L.
        • Meijer G.
        • Ylstra B.
        • Caldas C.
        Array comparative genomic hybridization copy number profiling: a new tool for translational research in solid malignancies.
        Semin Radiat Oncol. 2008; 18: 98-104
        • Higgins R.A.
        • Gunn S.R.
        • Robetorye R.S.
        Clinical application of array-based comparative genomic hybridization for the identification of prognostically important genetic alterations in chronic lymphocytic leukemia.
        Mol Diagn Ther. 2008; 12: 271-280
        • van Dongen J.J.
        • Macintyre E.A.
        • Gabert J.A.
        • et al.
        Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia.
        Leukemia. 1999; 13: 1901-1928
        • Nasedkina T.V.
        • Zharinov V.S.
        • Isaeva E.A.
        • et al.
        Clinical screening of gene rearrangements in childhood leukemia by using a multiplex polymerase chain reaction-microarray approach.
        Clin Cancer Res. 2003; 9: 5620-5629
        • Chen I.M.
        • Chakerian A.
        • Combs D.
        • Garner K.
        • Viswanatha D.S.
        Post-PCR multiplex fluorescent ligation detection assay and flow cytometry for rapid detection of gene-specific translocations in leukemia.
        Am J Clin Pathol. 2004; 122: 783-793
        • Strausberg R.L.
        • Levy S.
        • Rogers Y.H.
        Emerging DNA sequencing technologies for human genomic medicine.
        Drug Discov Today. 2008; 13: 569-577
        • Chien J.H.
        • Tang J.L.
        • Chen R.L.
        • Li C.C.
        • Lee C.P.
        Detection of BCR-ABL gene mutations in Philadelphia chromosome positive leukemia patients resistant to STI-571 cancer therapy.
        Leuk Res. 2008; 32: 1724-1734
        • Zenz T.
        • Kröber A.
        • Scherer K.
        • et al.
        Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up.
        Blood. 2008; 112: 3322-3329
        • Ottone T.
        • Ammatuna E.
        • Lavorgna S.
        • et al.
        An allele-specific rt-PCR assay to detect type A mutation of the nucleophosmin-1 gene in acute myeloid leukemia.
        J Mol Diagn. 2008; 10: 212-216
        • Deligezer U.
        • Akisik E.
        • Dalay N.
        Genotyping of the MTHFR gene polymorphism, C677T in patients with leukemia by melting curve analysis.
        Mol Diagn. 2003; 7: 181-185
        • Wen W.H.
        • Bernstein L.
        • Lescallett J.
        • et al.
        Comparison of TP53 mutations identified by oligonucleotide microarray and conventional DNA sequence analysis.
        Cancer Res. 2000; 60: 2716-2722
        • Ronaghi M.
        Pyrosequencing sheds light on DNA sequencing.
        Genome Res. 2001; 11: 3-11
        • Ogino S.
        • Kawasaki T.
        • Brahmandam M.
        • et al.
        Sensitive sequencing method for KRAS mutation detection by Pyrosequencing.
        J Mol Diagn. 2005; 7: 413-421
        • Huang Q.
        • Chen W.
        • Gaal K.K.
        • Slovak M.L.
        • Stein A.
        • Weiss L.M.
        A rapid, one step assay for simultaneous detection of FLT3/ITD and NPM1 mutations in AML with normal cytogenetics.
        Br J Haematol. 2008; 142: 489-492
        • Erickson P.
        • Gao J.
        • Chang K.S.
        • et al.
        Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt.
        Blood. 1992; 80: 1825-1831
        • Nucifora G.
        • Birn D.J.
        • Erickson P.
        • et al.
        Detection of DNA rearrangements in the AML1 and ETO loci and of an AML1/ETO fusion mRNA in patients with t(8;21) acute myeloid leukemia.
        Blood. 1993; 81: 883-888
        • Rowley J.D.
        Association of specific chromosome abnormalities with type of acute leukemia and with patient age.
        Cancer Res. 1981; 41: 3407-3410
        • Arthur D.C.
        • Bloomfield C.D.
        Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia: a new association.
        Blood. 1983; 61: 994-998
        • Shigesada K.
        • van de Sluis B.
        • Liu P.P.
        Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11.
        Oncogene. 2004; 23: 4297-4307
        • Liu P.
        • Tarlé S.A.
        • Hajra A.
        • et al.
        Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia.
        Science. 1993; 261: 1041-1044
        • Kogan S.C.
        • Lagasse E.
        • Atwater S.
        • et al.
        The PEBP2betaMYH11 fusion created by Inv(16)(p13;q22) in myeloid leukemia impairs neutrophil maturation and contributes to granulocytic dysplasia.
        Proc Natl Acad Sci U S A. 1998; 95: 11863-11868
        • Bitter M.A.
        • Le Beau M.M.
        • Larson R.A.
        • et al.
        A morphologic and cytochemical study of acute myelomonocytic leukemia with abnormal marrow eosinophils associated with inv(16)(p13q22).
        Am J Clin Pathol. 1984; 81: 733-741
        • Le Beau M.M.
        • Larson R.A.
        • Bitter M.A.
        • Vardiman J.W.
        • Golomb H.M.
        • Rowley J.D.
        Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association.
        N Engl J Med. 1983; 309: 630-636
        • Byrd J.C.
        • Mrózek K.
        • Dodge R.K.
        • et al.
        Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461).
        Blood. 2002; 100: 4325-4336
        • Schlenk R.F.
        • Benner A.
        • Krauter J.
        • et al.
        Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup.
        J Clin Oncol. 2004; 22: 3741-3750
        • Bullinger L.
        • Döhner K.
        • Bair E.
        • et al.
        Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia.
        N Engl J Med. 2004; 350: 1605-1616
        • Bullinger L.
        • Rücker F.G.
        • Kurz S.
        • et al.
        Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia.
        Blood. 2007; 110: 1291-1300
        • Tallman M.S.
        • Andersen J.W.
        • Schiffer C.A.
        • et al.
        All-trans-retinoic acid in acute promyelocytic leukemia.
        N Engl J Med. 1997; 337: 1021-1028
        • Ravandi F.
        • Estey E.
        • Jones D.
        • et al.
        Effective treatment of acute promyelocytic leukemia with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab ozogamicin.
        J Clin Oncol. 2009; 27: 504-510
        • de The H.
        • Chomienne C.
        • Lanotte M.
        • Degos L.
        • Dejean A.
        The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus.
        Nature. 1990; 347: 558-561
        • Melnick A.
        • Licht J.D.
        Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia.
        Blood. 1999; 93: 3167-3215
        • Callens C.
        • Chevret S.
        • Cayuela J.M.
        • et al.
        Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group.
        Leukemia. 2005; 19: 1153-1160
        • Bacher U.
        • Haferlach C.
        • Kern W.
        • Haferlach T.
        • Schnittger S.
        Prognostic relevance of FLT3-TKD mutations in AML: the combination matters – an analysis of 3082 patients.
        Blood. 2008; 111: 2527-2537
        • Schnittger S.
        • Kohl T.M.
        • Leopold N.
        • et al.
        D324N single-nucleotide polymorphism in the FLT3 gene is associated with higher risk of myeloid leukemias.
        Genes Chromosomes Cancer. 2006; 45: 332-337
        • Schnittger S.
        • Schoch C.
        • Dugas M.
        • et al.
        Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease.
        Blood. 2002; 100: 59-66
        • Thiede C.
        • Steudel C.
        • Mohr B.
        • et al.
        Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis.
        Blood. 2002; 99: 4326-4335
        • Armstrong S.A.
        • Mabon M.E.
        • Silverman L.B.
        • et al.
        FLT3 mutations in childhood acute lymphoblastic leukemia.
        Blood. 2004; 103: 3544-3546
        • Meshinchi S.
        • Alonzo T.A.
        • Stirewalt D.L.
        • et al.
        Clinical implications of FLT3 mutations in pediatric AML.
        Blood. 2006; 108: 3654-3661
        • Zwaan C.M.
        • Meshinchi S.
        • Radich J.P.
        • et al.
        FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance.
        Blood. 2003; 102: 2387-2394
        • Dohner K.
        • Schlenk R.F.
        • Habdank M.
        • et al.
        Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations.
        Blood. 2005; 106: 3740-3746
        • Whitman S.P.
        • Ruppert A.S.
        • Radmacher M.D.
        • et al.
        FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications.
        Blood. 2008; 111: 1552-1559
        • Pratz K.
        • Levis M.
        Incorporating FLT3 inhibitors into acute myeloid leukemia treatment regimens.
        Leuk Lymphoma. 2008; 49: 852-863
        • Murphy K.M.
        • Levis M.
        • Hafez M.J.
        • et al.
        Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay.
        J Mol Diagn. 2003; 5: 96-102
        • Vaughn C.P.
        • Elenitoba-Johnson K.S.
        High-resolution melting analysis for detection of internal tandem duplications.
        J Mol Diagn. 2004; 6: 211-216
        • Grimwade D.
        • Biondi A.
        • Mozziconacci M.J.
        • et al.
        Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Groupe de Francais d'Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies”.
        Blood. 2000; 96: 1297-1308
        • Hummel J.L.
        • Wells R.A.
        • Dube I.D.
        • Licht J.D.
        • Kamel-Reid R.
        Deregulation of NPM and PLZF in a variant t(5;17) case of acute promyelocytic leukemia.
        Oncogene. 1999; 18: 633-641
        • Redner R.L.
        • Rush E.A.
        • Faas S.
        • Rudert W.A.
        • Corey S.J.
        The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion.
        Blood. 1996; 87: 882-886
        • Falini B.
        • Albiero E.
        • Bolli N.
        • et al.
        Aberrant subcellular expression of nucleophosmin and NPM-MLF1 fusion protein in acute myeloid leukaemia carrying t(3;5): a comparison with NPMc+ AML.
        Leukemia. 2006; 20: 368-371
        • Raimondi S.C.
        • Dube I.D.
        • Valentine M.B.
        • et al.
        Clinicopathologic manifestations and breakpoints of the t(3;5) in patients with acute nonlymphocytic leukemia.
        Leukemia. 1989; 3: 42-47
        • Yoneda-Kato N.
        • Look A.T.
        • Kirstein M.N.
        • et al.
        The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1.
        Oncogene. 1996; 12: 265-275
        • Falini B.
        • Nicoletti I.
        • Bolli N.
        • et al.
        Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias.
        Haematologica. 2007; 92: 519-532
        • Schmidt-Zachmann M.S.
        • Franke W.W.
        DNA cloning and amino acid sequence determination of a major constituent protein of mammalian nucleoli. Correspondence of the nucleoplasmin-related protein NO38 to mammalian protein B23.
        Chromosoma. 1988; 96: 417-426
        • Falini B.
        • Mecucci C.
        • Tiacci E.
        • et al.
        Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.
        N Engl J Med. 2005; 352: 254-266
        • Chen W.
        • Rassidakis G.Z.
        • Medeiros L.J.
        Nucleophosmin gene mutations in acute myeloid leukemia.
        Arch Pathol Lab Med. 2006; 130: 1687-1692
        • Scholl S.
        • Mugge L.O.
        • Landt O.
        • et al.
        Rapid screening and sensitive detection of NPM1 (nucleophosmin) exon 12 mutations in acute myeloid leukaemia.
        Leuk Res. 2007; 31: 1205-1211
        • Djabali M.
        • Selleri L.
        • Parry P.
        • Bower M.
        • Young B.
        • Evans G.A.
        A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias.
        Nat Genet. 1992; 2: 113-118
        • Reindl C.
        • Bagrintseva K.
        • Vempati S.
        • et al.
        Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML.
        Blood. 2006; 107: 3700-3707
        • Ziemin-van der Poel S.
        • McCabe N.R.
        • Gill H.J.
        • et al.
        Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias.
        Proc Natl Acad Sci U S A. 1991; 88: 10735-10739
        • Argiropoulos B.
        • Humphries R.K.
        Hox genes in hematopoiesis and leukemogenesis.
        Oncogene. 2007; 26: 6766-6776
        • Eklund E.A.
        The role of HOX genes in malignant myeloid disease.
        Curr Opin Hematol. 2007; 14: 85-89
        • Rowley J.D.
        Chromosome translocations: dangerous liaisons revisited.
        Nat Rev Cancer. 2001; 1: 245-250
        • Hess J.L.
        MLL: a histone methyltransferase disrupted in leukemia.
        Trends Mol Med. 2004; 10: 500-507
        • Krivtsov A.V.
        • Armstrong S.A.
        MLL translocations, histone modifications and leukaemia stem-cell development.
        Nat Rev Cancer. 2007; 7: 823-833
        • Caligiuri M.A.
        • Schichman S.A.
        • Strout M.P.
        • et al.
        Molecular rearrangement of the ALL-1 gene in acute myeloid leukemia without cytogenetic evidence of 11q23 chromosomal translocations.
        Cancer Res. 1994; 54: 370-373
        • Dohner K.
        • Tobis K.
        • Ulrich R.
        • et al.
        Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm.
        J Clin Oncol. 2002; 20: 3254-3261
        • Weisser M.
        • Kern W.
        • Schoch C.
        • Hiddemann W.
        • Haferlach T.
        • Schnittger S.
        Risk assessment by monitoring expression levels of partial tandem duplications in the MLL gene in acute myeloid leukemia during therapy.
        Haematologica. 2005; 90: 881-889
        • Edling C.E.
        • Hallberg B.
        c-Kit – a hematopoietic cell essential receptor tyrosine kinase.
        Int J Biochem Cell Biol. 2007; 39: 1995-1998
        • Yarden Y.
        • Kuang W.J.
        • Yang-Feng T.
        • et al.
        Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand.
        EMBO J. 1987; 6: 3341-3351
        • Orfao A.
        • Garcia-Montero A.C.
        • Sanchez L.
        • Escribano L.
        • Rema
        Recent advances in the understanding of mastocytosis: the role of KIT mutations.
        Br J Haematol. 2007; 138: 12-30
        • Blechman J.M.
        • Lev S.
        • Barg J.
        • et al.
        The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction.
        Cell. 1995; 80: 103-113
        • Roskoski Jr., R.
        Signaling by Kit protein-tyrosine kinase – the stem cell factor receptor.
        Biochem Biophys Res Commun. 2005; 337: 1-13
        • Roskoski Jr., R.
        Structure and regulation of Kit protein-tyrosine kinase – the stem cell factor receptor.
        Biochem Biophys Res Commun. 2005; 338: 1307-1315
        • Zhang Z.
        • Zhang R.
        • Joachimiak A.
        • Schlessinger J.
        • Kong X.P.
        Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation.
        Proc Natl Acad Sci U S A. 2000; 97: 7732-7737
        • Radmacher M.D.
        • Marcucci G.
        • Ruppert A.S.
        • et al.
        Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study.
        Blood. 2006; 108: 1677-1683
        • Robertson S.C.
        • Tynan J.
        • Donoghue D.J.
        RTK mutations and human syndromes: when good receptors turn bad.
        Trends Genet. 2000; 16: 368
        • Frohling S.
        • Schlenk R.F.
        • Stolze I.
        • et al.
        CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations.
        J Clin Oncol. 2004; 22: 624-633
        • Liang D.C.
        • Shih L.Y.
        • Huang C.F.
        • et al.
        CEBPalpha mutations in childhood acute myeloid leukemia.
        Leukemia. 2005; 19: 410-414
        • Marcucci G.
        • Strout M.P.
        • Bloomfield C.D.
        • Caligiuri M.A.
        Detection of unique ALL1 (MLL) fusion transcripts in normal human bone marrow and blood: distinct origin of normal versus leukemic ALL1 fusion transcripts.
        Cancer Res. 1998; 58: 790-793
        • Maric I.
        • Robyn J.
        • Metcalfe D.D.
        • et al.
        KIT D816V-associated systemic mastocytosis with eosinophilia and FIP1L1/PDGFRA-associated chronic eosinophilic leukemia are distinct entities.
        J Allergy Clin Immunol. 2007; 120: 680-687
        • Metzgeroth G.
        • Walz C.
        • Score J.
        • et al.
        Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma.
        Leukemia. 2007; 21: 1183-1188
        • Pardanani A.
        • Kettering R.P.
        • Brockman S.R.
        • et al.
        CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy.
        Blood. 2003; 102: 3093-3096
        • Haferlach T.
        • Bacher U.
        • Haferlach C.
        • Kern W.
        • Schnittger S.
        Insight into the molecular pathogenesis of myeloid malignancies.
        Curr Opin Hematol. 2007; 14: 90-97
        • Wouters B.J.
        • Lowenberg B.
        • Delwel R.
        A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects.
        Blood. 2009; 113: 291-298
        • Golub T.R.
        • Slonim D.K.
        • Tamayo P.
        • et al.
        Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.
        Science. 1999; 286: 531-537
        • Metzeler K.H.
        • Hummel M.
        • Bloomfeld C.D.
        • et al.
        An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia.
        Blood. 2008; 112: 4193-4201
        • Tagliafico E.
        • Tenedini E.
        • Manfredini R.
        • et al.
        Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia.
        Leukemia. 2006; 20: 1751-1758
        • Valk P.J.
        • Verhaak R.G.
        • Beijen M.A.
        • et al.
        Prognostically useful gene-expression profiles in acute myeloid leukemia.
        N Engl J Med. 2004; 350: 1617-1628
        • Ross M.E.
        • Mahfouz R.
        • Onciu M.
        • et al.
        Gene expression profiling of pediatric acute myelogenous leukemia.
        Blood. 2004; 104: 3679-3687
        • Holleman A.
        • Cheok M.H.
        • den Boer M.L.
        • et al.
        Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment.
        N Engl J Med. 2004; 351: 533-542
        • Jelier R.
        • Jenster G.
        • Dorssers L.C.
        • et al.
        Text-derived concept profiles support assessment of DNA microarray data for acute myeloid leukemia and for androgen receptor stimulation.
        BMC Bioinformatics. 2007; 8: 14
        • Ngo V.N.
        • Davis R.E.
        • Lamy L.
        • et al.
        A loss-of-function RNA interference screen for molecular targets in cancer.
        Nature. 2006; 441: 106-110
        • Dowsett M.
        • Dunbier A.K.
        Emerging biomarkers and new understanding of traditional markers in personalized therapy for breast cancer.
        Clin Cancer Res. 2008; 14: 8019-8026
        • Bartel D.P.
        MicroRNAs: genomics, biogenesis, mechanism, and function.
        Cell. 2004; 116: 281-297
        • Calin G.A.
        • Croce C.M.
        MicroRNA signatures in human cancers.
        Nat Rev Cancer. 2006; 6: 857-866
        • Marcucci G.
        • Radmacher M.D.
        • Maharry K.
        • et al.
        MicroRNA expression in cytogenetically normal acute myeloid leukemia.
        N Engl J Med. 2008; 358: 1919-1928
        • Garzon R.
        • Garofalo M.
        • Martelli M.P.
        • et al.
        Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin.
        Proc Natl Acad Sci U S A. 2008; 105: 3945-3950