Oncocytic thyroid neoplasms: from histology to molecular biology

      Abstract

      The recent update of the 4th edition of the World Health Organization's Classification of Tumors of Endocrine Organs introduced important changes in the nomenclature of follicular-cell thyroid tumors, namely, regarding mitochondrion-rich neoplasms (In this review, for the practical purposes, the words Hürthle and oncocytic are synonymous in the field of thyroid pathology.) According to the last edition, oncocytic thyroid neoplasms, with follicular architecture and no typical nuclei of papillary carcinoma, – are now included in a separate group - the Hürthle cell neoplasms. Whenever thus categorized-while keeping oncocytic variant of papillary, medullary and poorly differentiated carcinoma-, a sort of tidal phenomenon has occurred about oncocytic tumors known for decades. Through this categorization, pathologists and researchers need to progress in the discussion about etiopathogenesis of oncocytic neoplasms (ONs). This review provides an attempt to balance the facts and doubts by questioning the recent changes based on what is known about oncocytic tumors.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Lloyd R.V.
        • Osamura R.Y.
        • Klöppel G.
        • Rosai J.
        4th edn. WHO classification of Tumours of endocrine organs. vol. 10. 2017
        • Hamperl H.
        Über das Vorkommen von Onkocyten in verschiedenen Organen und ihren Geschwülsten.
        Virchows Arch Pathol Anat Physiol Klin Med. 1936; 298: 327-375
        • Jaffe R.
        Adenolymphoma (onkocytoma) of the parotid gland.
        Am J Canc. 1932; 16: 1414-1423
        • Hürthle K.
        Beiträge zur Kenntniss des Secretionsvorgangs in der Schilddrüse.
        Archiv für die Gesamte Physiologie des Menschen und der Tiere. 1894; 56: 1-44
        • Askanazy M.
        Pathologisch-anatomische Beiträge zur Kenntnis des Morbus Basedowii, insbesondere über die dabei auftretende Muskelerkrankung.
        Dtsch Arch Klin Med. 1898; 61: 118-186
        • DeLellis R.A.
        • Lloyd R.V.
        • Heitz P.U.
        • Eng C.
        WHO classification of tumours.
        Pathology and genetics of Tumours of endocrine organs. IARC press, Lyon2004
        • Maximo V.
        • Sobrinho-Simoes M.
        Hurthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance.
        Virchows Arch. 2000; 437: 107-115
        • Mete O.
        • Asa S.L.
        Oncocytes, oxyphils, Hürthle, and Askanazy cells: morphological and molecular features of oncocytic thyroid nodules.
        Endocr pathol. 2010; 21: 16-24
        • Correia M.
        • Pinheiro P.
        • Batista R.
        • Soares P.
        • Sobrinho-Simões M.
        • Máximo V.
        Etiopathogenesis of oncocytomas.
        Semin Canc Biol. 2017; 47: 82-94https://doi.org/10.1016/j.semcancer.2017.06.014
        • LiVolsi V.A.
        • Merino M.J.
        Worrisome histologic alterations following fine-needle aspiration of the thyroid(WHAFFT).
        Pathol Annu. 1994; 29 (PMID:7936753 (1994)): 99-120
        • Cavadas B.
        • Pereira J.B.
        • Correia M.
        • et al.
        Genomic and transcriptomic characterization of the mitochondrial-rich oncocytic phenotype on a thyroid carcinoma background.
        Mitochondrion. 2018; https://doi.org/10.1016/j.mito.2018.04.001
        • Tsybrovskyy O.
        • Rossmann-Tsybrovskyy M.
        Oncocytic versus mitochondrion-rich follicular thyroid tumours: should we make a difference?.
        Histopathology. 2009; 55: 665-682https://doi.org/10.1111/j.1365-2559.2009.03441.x
        • Tremblay G.
        • Pearse A.G.
        Histochemistry of oxidative enzyme systems in the human thyroid, with special reference to Askanazy cells.
        J Pathol Bacteriol. 1960; 80: 353-358
        • Sak S.D.
        Variants of papillary thyroid carcinoma: multiple faces of a familiar tumor.
        Turk Patoloji Derg. 2015; 31 (2015): 34-47https://doi.org/10.5146/tjpath.2015.01313
        • Ganly I.
        • Makarov V.
        • Deraje S.
        • et al.
        Integrated genomic analysis of hurthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes.
        Cancer Cell. 2018; 34 (e255): 256-270https://doi.org/10.1016/j.ccell.2018.07.002
        • Gopal R.K.
        • Kübler K.
        • Calvo S.E.
        • et al.
        Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in hurthle cell carcinoma.
        Cancer Cell. 2018; 34 (e245.16): 242-255https://doi.org/10.1016/j.ccell.2018.06.013
        • Savagner F.
        • Franc B.
        • Guyetant S.
        • Rodien P.
        • Reynier P.
        • Malthiery Y.
        Defective mitochondrial ATP synthesis in oxyphilic thyroid tumors.
        J Clin Endocrinol Metab. 2001; 86: 4920-4925
        • Ferreira-da-Silva A.
        • Valacca C.
        • Rios E.
        • et al.
        Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration.
        PLoS One. 2015; 10 (e0122308)https://doi.org/10.1371/journal.pone.0122308
        • Lima A.R.
        • Santos L.
        • Correia M.
        • et al.
        Dynamin-related protein 1 at the crossroads of cancer.
        Genes. 2018; 9https://doi.org/10.3390/genes9020115
        • Maximo V.
        • Soares P.
        • Lima J.
        • Cameselle-Teijeiro J.
        • Sobrinho-Simoes M.
        Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors.
        Am j pathol. 2002; 160: 1857-1865https://doi.org/10.1016/S0002-9440(10)61132-7
        • Maximo V.
        • Sobrinho-Simoes M.
        Mitochondrial DNA 'common' deletion in Hurthle cell lesions of the thyroid.
        J pathol. 2000; 192 (CO;2-3): 561-562https://doi.org/10.1002/1096-9896(200012)192:4<561::AID-PATH790>3.0
        • Canzian F.
        • Amati P.
        • Harach H.R.
        • et al.
        A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2.
        Am J Hum Genet. 1998; 63: 1743-1748https://doi.org/10.1086/302164
        • Maximo V.
        • Botelho T.
        • Capela J.
        • et al.
        Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid.
        Br J Canc. 2005; 92: 1892-1898https://doi.org/10.1038/sj.bjc.6602547
        • Moreira S.
        • Correia M.
        • Soares P.
        • Maximo V.
        GRIM-19 function in cancer development.
        Mitochondrion. 2011; 11: 693-699https://doi.org/10.1016/j.mito.2011.05.011
        • Bonora E.
        • Evangelisti C.
        • Bonichon F.
        • Tallini G.
        • Romeo G.
        Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas.
        Br J Canc. 2006; 95: 1529-1536https://doi.org/10.1038/sj.bjc.6603455
        • Diquigiovanni C.
        • Bergamini C.
        • Evangelisti C.
        • et al.
        Mutant MYO1F alters the mitochondrial network and induces tumor proliferation in thyroid cancer.
        Int J Canc. 2018; https://doi.org/10.1002/ijc.31548
        • Pradella L.M.
        • Lang M.
        • Kurelac I.
        • et al.
        Where Birt-Hogg-Dube meets Cowden syndrome: mirrored genetic defects in two cases of syndromic oncocytic tumours.
        Eur J Hum Genet. 2013; 21: 1169-1172https://doi.org/10.1038/ejhg.2013.8
        • Lyu L.
        • Wang Q.
        • Song S.
        • et al.
        Oncocytic tumors are marked by enhanced mitochondrial content and mtDNA mutations of complex I in Chinese patients.
        Mitochondrion. 2018; https://doi.org/10.1016/j.mito.2018.01.008
        • Nikiforova M.N.
        • Lynch R.A.
        • Biddinger P.W.
        • et al.
        RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma.
        J Clin Endocrinol Metab. 2003; 88: 2318-2326,https://doi.org/10.1210/jc.2002-021907
        • de Vries M.M.
        • Celestino R.
        • Castro P.
        • et al.
        RET/PTC rearrangement is prevalent in follicular Hurthle cell carcinomas.
        Histopathology. 2012; 61: 833-843https://doi.org/10.1111/j.1365-2559.2012.04276.x
        • Liu R.T.
        • Hou C.Y.
        • You H.L.
        • et al.
        Selective occurrence of ras mutations in benign and malignant thyroid follicular neoplasms in Taiwan.
        Thyroid. 2004; 14: 616-621https://doi.org/10.1089/1050725041692882
        • Ganly I.
        • Ricarte Filho J.
        • Eng S.
        • et al.
        Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy.
        J Clin Endocrinol Metab. 2013; 98: E962-E972https://doi.org/10.1210/jc.2012-3539
        • Trovisco V.
        • Soares P.
        • Preto A.
        • et al.
        Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness.
        Virchows Arch. 2005; 446: 589-595https://doi.org/10.1007/s00428-005-1236-0
        • Cancer Genome Atlas Research N.
        Integrated genomic characterization of papillary thyroid carcinoma.
        Cell. 2014; 159: 676-690https://doi.org/10.1016/j.cell.2014.09.050
        • Cheung C.C.
        • Ezzat S.
        • Ramyar L.
        • Freeman J.L.
        • Asa S.L.
        Molecular basis off hurthle cell papillary thyroid carcinoma.
        J Clin Endocrinol Metab. 2000; 85: 878-882https://doi.org/10.1210/jcem.85.2.6404
        • Chiappetta G.
        • Toti P.
        • Cetta F.
        • et al.
        The RET/PTC oncogene is frequently activated in oncocytic thyroid tumors (Hurthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions.
        J Clin Endocrinol Metab. 2002; 87: 364-369https://doi.org/10.1210/jcem.87.1.8180
        • Vinagre J.
        • Almeida A.
        • Pópulo H.
        • et al.
        Frequency of TERT promoter mutations in human cancers.
        Nat Commun. 2013; 4: 2185https://doi.org/10.1038/ncomms3185
        • Amorim J.P.
        • Santos G.
        • Vinagre J.
        • Soares P.
        The role of ATRX in the alternative lengthening of telomeres (ALT) phenotype.
        Genes. 2016; 7https://doi.org/10.3390/genes7090066
        • Melo M.
        • da Rocha A.G.
        • Vinagre J.
        • et al.
        TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas.
        J Clin Endocrinol Metab. 2014; 99: E754-E765https://doi.org/10.1210/jc.2013-3734
        • Chindris A.M.
        • Casler J.D.
        • Bernet V.J.
        • et al.
        Clinical and molecular features of Hurthle cell carcinoma of the thyroid.
        J Clin Endocrinol Metab. 2015; 100: 55-62https://doi.org/10.1210/jc.2014-1634.40
        • Landa I.
        • Ganly I.
        • Chan T.A.
        • et al.
        Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease.
        J Clin Endocrinol Metab. 2013; 98: E1562-E1566https://doi.org/10.1210/jc.2013-2383
        • Wei S.
        • LiVolsi V.A.
        • Montone K.T.
        • Morrissette J.J.
        • Baloch Z.W.
        PTEN and TP53 mutations in oncocytic follicular carcinoma.
        Endocr pathol. 2015; 26: 365-369https://doi.org/10.1007/s12022-015-9403-6
        • Erickson L.A.
        • Jalal S.M.
        • Goellner J.R.
        • et al.
        Analysis of Hurthle cell neoplasms of the thyroid by interphase fluorescence in situ hybridization.
        Am J Surg Pathol. 2001; 25: 911-917
        • Corver W.E.
        • Ruano44 D.
        • Weijers K.
        • et al.
        Genome haploidisation with chromosome 7 retention in oncocytic follicular thyroid carcinoma.
        PLoS One. 2012; 7 (e38287)https://doi.org/10.1371/journal.pone.0038287
        • Corver W.E.
        • van Wezel T.
        • Molenaar K.
        • et al.
        Near-haploidization significantly associates with oncocytic adrenocortical, thyroid, and parathyroid tumors but not with mitochondrial DNA mutations.
        Genes Chromosomes Cancer. 2014; 53: 833-844https://doi.org/10.1002/gcc.22194
        • Nikiforova M.N.
        • Tseng G.C.
        • Steward D.
        • Diorio D.
        • Nikiforov Y.E.
        MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility.
        J Clin Endocrinol Metab. 2008; 93: 1600-1608https://doi.org/10.1210/jc.2007-2696
        • Vriens M.R.
        • Weng J.
        • Suh I.
        • et al.
        MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer.
        Cancer. 2012; 118: 3426-3432https://doi.org/10.1002/cncr.26587
        • Dettmer M.S.
        • Perren A.
        • Moch H.
        • et al.
        MicroRNA profile of poorly differentiated thyroid carcinomas: new diagnostic and prognostic insights.
        J Mol Endocrinol. 2014; 52: 181-189https://doi.org/10.1530/JME-13-0266
        • Petric R.
        • Gazic B.
        • Goricar K.
        • et al.
        Expression of miRNA and occurrence of distant metastases in patients with hurthle cell carcinoma.
        Internet J Endocrinol. 2016; : 8945247https://doi.org/10.1155/2016/8945247
        • Galusca B.
        • Dumollard J.M.
        • Lassandre S.
        • et al.
        Global DNA methylation evaluation: potential complementary marker in differential diagnosis of thyroid neoplasia.
        Virchows Arch. 2005; 447: 18-23https://doi.org/10.1007/s00428-005-1268-5
        • Graff J.R.
        • Greenberg V.E.
        • Herman J.G.
        • et al.
        Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle's cell, and poorly differentiated human thyroid carcinoma.
        Canc Res. 1998; 58: 2063-2066
        • Ko H.J.
        • Kim B.Y.
        • Jung C.H.
        • et al.
        DNA methylation of RUNX3 in papillary thyroid cancer.
        Korean J Intern Med. 2012; 27: 407-410https://doi.org/10.3904/kjim.2012.27.4.407
        • Stephen J.K.
        • Chen K.M.
        • Merritt J.
        • et al.
        Methylation markers for early detection and differentiation of follicular thyroid cancer subtypes.
        Canc Clin Oncol. 2015; 4: 1-12https://doi.org/10.5539/cco.v4n2p1
        • Gundry S.R.
        • Burney R.E.
        • Thompson N.W.
        • Lloyd R.
        Total thyroidectomy for Hurthle cell neoplasm of the thyroid.
        Arch Surg. 1983; 118: 529-532
        • Bhattacharyya N.
        Survival and prognosis in Hurthle cell carcinoma of the thyroid gland.
        Arch Otolaryngol Head Neck Surg. 2003; 129: 207-210
        • Sanders L.E.
        • Silverman M.
        Follicular and Hurthle cell carcinoma: predicting outcome and directing therapy.
        Surgery. 1998; 124: 967-974
        • Haigh P.I.
        • Urbach D.R.
        The treatment and prognosis of Hurthle cell follicular thyroid carcinoma compared with its non-Hurthle cell counterpart.
        Surgery. 2005; 138 (discussion 1157-1158): 1152-1157https://doi.org/10.1016/j.surg.2005.08.034
        • Hundahl S.A.
        • Fleming I.D.
        • Fremgen A.M.
        • Menck H.R.
        A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S..
        Cancer. 1985-1995; vol. 83 ([see commetns], CO;2-1 [pii] (1998)): 2638-2648https://doi.org/10.1002/(SICI)1097-0142(19981215)83:12<2638::AID-CNCR31>3.0
        • Carcangiu M.L.
        • Bianchi S.
        • Savino D.
        • Voynick I.M.
        • Rosai J.
        Follicular Hurthle cell tumors of the thyroid gland.
        Cancer. 1991; 68: 1944-1953
        • Petric R.
        • Gazic B.
        • Besic N.
        Prognostic factors for disease-specific survival in 108 patients with Hurthle cell thyroid carcinoma: a single-institution experience.
        BMC Canc. 2014; 14: 777https://doi.org/10.1186/1471-2407-14-777
        • Ghossein R.A.
        • Hiltzik D.H.
        • Carlson D.L.
        • et al.
        Prognostic factors of recurrence in encapsulated Hurthle cell carcinoma of the thyroid gland: a clinicopathologic study of 50 cases.
        Cancer. 2006; 106: 1669-1676https://doi.org/10.1002/cncr.21825
        • Mazzaferri E.L.
        An overview of the management of papillary and follicular thyroid carcinoma.
        Thyroid. 1999; 9: 421-427https://doi.org/10.1089/thy.1999.9.421
        • Khafif A.
        • Khafif R.A.
        • Attie J.N.
        Hürthle cell carcinoma: a malignancy of low-grade potential.
        Head Neck: J Sci Special Head Neck. 1999; 21: 506-511
        • Mills S.C.
        • Haq M.
        • Smellie W.J.
        • Harmer C.
        Hurthle cell carcinoma of the thyroid: retrospective review of 62 patients treated at the Royal Marsden Hospital between 1946 and 2003.
        Eur J Surg Oncol. 2009; 35: 230-234https://doi.org/10.1016/j.ejso.2008.06.007
        • Oluic B.
        • Paunovic I.
        • Loncar Z.
        • et al.
        Survival and prognostic factors for survival, cancer specific survival and disease-free interval in 239 patients with Hurthle cell carcinoma: a single center experience.
        BMC Canc. 2017; 17: 371https://doi.org/10.1186/s12885-017-3370-x
        • Jillard C.L.
        • Youngwirth L.
        • Scheri R.P.
        • Roman S.
        • Sosa J.A.
        Radioactive iodine treatment is associated with improved survival for patients with hurthle cell carcinoma.
        Thyroid. 2016; 26: 959-964https://doi.org/10.1089/thy.2016.0246
        • Besic N.
        • Zgajnar J.
        • Hocevar M.
        • Frkovic-Grazio S.
        Is patient's age a prognostic factor for follicular thyroid carcinoma in the TNM classification system?.
        Thyroid. 2005; 15: 439-448https://doi.org/10.1089/thy.2005.15.439
        • Lopez-Penabad L.
        • Chiu A.C.
        • Hoff A.O.
        • et al.
        Prognostic factors in patients with Hurthle cell neoplasms of the thyroid.
        Cancer. 2003; 97: 1186-1194https://doi.org/10.1002/cncr.11176
        • Goffredo P.
        • Sosa J.A.
        • Roman S.A.
        Differentiated thyroid cancer presenting with distant metastases: a population analysis over two decades.
        World J Surg. 2013; 37: 1599-1605https://doi.org/10.1007/s00268-013-2006-9
        • Samaan N.A.
        • Maheshwari Y.K.
        • Nader S.
        • et al.
        Impact of therapy for differentiated carcinoma of the thyroid: an analysis of 706 cases.
        J Clin Endocrinol Metab. 1983; 56: 1131-1138https://doi.org/10.1210/jcem-56-6-1131
        • Kuo E.J.
        • Roman S.A.
        • Sosa J.A.
        Patients with follicular and Hurthle cell microcarcinomas have compromised survival: a population level study of 22,738 patients.
        Surgery. 2013; 154 (discussion 1253-1244): 1246-1253https://doi.org/10.1016/j.surg.2013.04.033
        • Kim W.G.
        • Kim T.Y.
        • Kim T.H.
        • et al.
        Follicular and Hurthle cell carcinoma of the thyroid in iodine-sufficient area: retrospective analysis of Korean multicenter data.
        Korean J Intern Med. 2014; 29: 325-333https://doi.org/10.3904/kjim.2014.29.3.325
        • Loh K.C.
        • Greenspan F.S.
        • Gee L.
        • Miller T.R.
        • Yeo P.P.
        Pathological tumor-node-metastasis (pTNM) staging for papillary and follicular thyroid carcinomas: a retrospective analysis of 700 patients.
        J Clin Endocrinol Metab. 1997; 82: 3553-3562https://doi.org/10.1210/jcem.82.11.4373
        • Hassan A.
        • Khalid M.
        • Riaz S.
        • Nawaz M.K.
        • Bashir H.
        Follicular thyroid carcinoma: disease response evaluation using American thyroid association risk assessment guidelines.
        Eur Thyroid J. 2015; 4: 260-265https://doi.org/10.1159/000442237
        • Lamartina L.
        • Deandreis D.
        • Durante C.
        • Filetti S.
        ENDOCRINE TUMOURS: imaging in the follow-up of differentiated thyroid cancer: current evidence and future perspectives for a risk-adapted approach.
        Eur J Endocrinol. 2016; 175: R185-R202https://doi.org/10.1530/EJE-16-0088
        • Haugen B.R.
        • Alexander E.K.
        • Bible K.C.
        • et al.
        American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer.
        Thyroid. 2015; 26: 1-133https://doi.org/10.1089/thy.2015.0020
        • Pryma D.A.
        • Schöder H.
        • Gönen M.
        • Robbins R.J.
        • Larson S.M.
        • Yeung H.W.
        Diagnostic accuracy and prognostic value of 18F-FDG PET in Hurthle cell thyroid cancer patients.
        J Nucl Med. 2006; 47: 1260-1266
        • Lowe V.J.
        • Mullan B.P.
        • Hay I.D.
        • McIver B.
        • Kasperbauer J.L.
        18F-FDG PET of patients with Hurthle cell carcinoma.
        J Nucl Med. 2003; 44: 1402-1406
        • Schlumberger M.
        • Tahara M.
        • Wirth L.J.
        • et al.
        Lenvatinib versus placebo in radioiodine-refractory thyroid cancer.
        N Engl J Med. 2015; 372: 621-630https://doi.org/10.1056/NEJMoa1406470
        • Brose M.S.
        • Nutting C.M.
        • Jarzab B.
        • et al.
        Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial.
        Lancet. 2014; 384: 319-328https://doi.org/10.1016/S0140-6736(14)60421-9