Interpretation of p16, p53 and mismatch repair protein immunohistochemistry in gynaecological neoplasia

      Abstract

      Current management of gynaecological neoplasms is underpinned by their molecular characteristics. For many neoplasms the underlying genetic abnormalities can be reliably detected using immunohistochemistry for protein expression as a surrogate. The three most widely utilized biomarkers in this regard in gynaecological neoplasms are p16, p53 and mismatch repair (MMR) proteins, and it is vital for all pathologists to be aware of the indications for their use, correct interpretation of expression patterns, awareness of technical and interpretive pitfalls as well as appropriate reporting terminology.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Diagnostic Histopathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Li J.
        • Poi M.J.
        • Tsai M.D.
        Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer.
        Biochemistry. 2011; 50: 5566-5582
        • de Sanjose S.
        • Alemany L.
        • Ordi J.
        • et al.
        Worldwide human papillomavirus genotype attribution in over 2000 cases of intraepithelial and invasive lesions of the vulva.
        Eur J Canc. 2013; 49: 3450-3461
        • Romagosa C.
        • Simonetti S.
        • Lopez-Vicente L.
        • et al.
        p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors.
        Oncogene. 2011; 30: 2087-2097
        • Cheng A.S.
        • Karnezis A.N.
        • Jordan S.
        • Singh N.
        • McAlpine J.N.
        • Gilks C.B.
        p16 immunostaining allows for accurate subclassification of vulvar squamous cell carcinoma into HPV-associated and HPV-independent cases.
        Int J Gynecol Pathol. 2016; 35: 385-393
        • Stolnicu S.
        • Barsan I.
        • Hoang L.
        • et al.
        International endocervical adenocarcinoma criteria and classification (IECC): a new pathogenetic classification for invasive adenocarcinomas of the endocervix.
        Am J Surg Pathol. 2018; 42: 214-226
        • Darragh T.M.
        • Colgan T.J.
        • Thomas Cox J.
        • et al.
        The lower anogenital squamous terminology standardization project for HPV-associated lesions: background and consensus recommendations from the college of American pathologists and the American society for colposcopy and cervical pathology.
        Int J Gynecol Pathol. 2013; 32: 76-115
        • Sagasta A.
        • Castillo P.
        • Saco A.
        • et al.
        p16 staining has limited value in predicting the outcome of histological low-grade squamous intraepithelial lesions of the cervix.
        Mod Pathol. 2016; 29: 51-59
        • Mills A.M.
        • Paquette C.
        • Castle P.E.
        • Stoler M.H.
        Risk stratification by p16 immunostaining of CIN1 biopsies: a retrospective study of patients from the quadrivalent HPV vaccine trials.
        Am J Surg Pathol. 2015; 39: 611-617
        • Loureiro J.
        • Oliva E.
        The spectrum of cervical glandular neoplasia and issues in differential diagnosis.
        Arch Pathol Lab Med. 2014; 138: 453-483
        • Stolnicu S.
        • Hoang L.
        • Chiu D.
        • et al.
        Clinical outcomes of HPV-associated and unassociated endocervical adenocarcinomas categorized by the international endocervical adenocarcinoma criteria and classification (IECC).
        Am J Surg Pathol. 2019; 43: 466-474
        • Park K.J.
        Cervical adenocarcinoma: integration of HPV status, pattern of invasion, morphology and molecular markers into classification.
        Histopathology. 2020; 76: 112-127
        • Carleton C.
        • Hoang L.
        • Sah S.
        • et al.
        A detailed immunohistochemical analysis of a large series of cervical and vaginal gastric-type Adenocarcinomas.
        Am J Surg Pathol. 2016; 40: 636-644
        • Stewart C.J.R.
        • Crum C.P.
        • McCluggage W.G.
        • et al.
        Guidelines to aid in the distinction of endometrial and endocervical carcinomas, and the distinction of independent primary carcinomas of the endometrium and adnexa from metastatic spread between these and other sites.
        Int J Gynecol Pathol. 2019; 38: S75-S92
        • WHO
        classification of tumors of the female reproductive organs.
        4th ed. International Agency for Research on Cancer (IARC), Lyon2014
        • McAlpine J.N.
        • Leung S.C.Y.
        • Cheng A.
        • et al.
        Human papillomavirus (HPV)-independent vulvar squamous cell carcinoma has a worse prognosis than HPV-associated disease: a retrospective cohort study.
        Histopathology. 2017; 71: 238-246
        • Rakislova N.
        • Clavero O.
        • Alemany L.
        • et al.
        Histological characteristics of HPV-associated and -independent squamous cell carcinomas of the vulva: a study of 1,594 cases.
        Int J Canc. 2017; 141: 2517-2527
        • Singh N.
        • Gilks C.B.
        Vulval squamous cell carcinoma and its precursors.
        Histopathology. 2020; 76: 128-138
        • Nicolas I.
        • Marimon L.
        • Barnadas E.
        • et al.
        HPV-negative tumors of the uterine cervix.
        Mod Pathol. 2019; 32: 1189-1196
        • Rodriguez-Carunchio L.
        • Soveral I.
        • Steenbergen R.D.
        • et al.
        HPV-negative carcinoma of the uterine cervix: a distinct type of cervical cancer with poor prognosis.
        BJOG. 2015; 122: 119-127
        • Harris S.L.
        • Levine A.J.
        The p53 pathway: positive and negative feedback loops.
        Oncogene. 2005; 24: 2899-2908
        • Olivier M.
        • Hollstein M.
        • Hainaut P.
        TP53 mutations in human cancers: origins, consequences, and clinical use.
        Cold Spring Harb Perspect Biol. 2010; 2: a001008
        • Kobel M.
        • Ronnett B.M.
        • Singh N.
        • Soslow R.A.
        • Gilks C.B.
        • McCluggage W.G.
        Interpretation of P53 immunohistochemistry in endometrial carcinomas: toward increased reproducibility.
        Int J Gynecol Pathol : Off J Int Soc Gynecol Pathol. 2019; 38: S123-S131
        • Yemelyanova A.
        • Vang R.
        • Kshirsagar M.
        • et al.
        Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis.
        Mod Pathol. 2011; 24: 1248-1253
        • Fadare O.
        • Gwin K.
        • Desouki M.M.
        • et al.
        The clinicopathologic significance of p53 and BAF-250a (ARID1A) expression in clear cell carcinoma of the endometrium.
        Mod Pathol. 2013; 26: 1101-1110
        • Kobel M.
        • Piskorz A.M.
        • Lee S.
        • et al.
        Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma.
        J Pathol Clin Res. 2016; 2: 247-258
        • Muller P.
        • Hrstka R.
        • Coomber D.
        • Lane D.P.
        • Vojtesek B.
        Chaperone-dependent stabilization and degradation of p53 mutants.
        Oncogene. 2008; 27: 3371-3383
        • Cancer Genome Atlas Research N.
        • Kandoth C.
        • Schultz N.
        • et al.
        Integrated genomic characterization of endometrial carcinoma.
        Nature. 2013; 497: 67-73
        • Vermij L.
        • Smit V.
        • Nout R.
        • Bosse T.
        Incorporation of molecular characteristics into endometrial cancer management.
        Histopathology. 2020; 76: 52-63
        • León-Castillo A.
        • Gilvazquez E.
        • Nout R.
        • et al.
        Clinicopathological and molecular characterisation of ‘multiple-classifier’ endometrial carcinomas.
        J Pathol. 2020; 250: 312-322https://doi.org/10.1002/path.5373
        • Singh N.
        • Piskorz A.M.
        • Bosse T.
        • et al.
        p53 immunohistochemistry is an accurate surrogate for TP53 mutational analysis in endometrial carcinoma biopsies.
        J Pathol. 2020; 250: 336-345https://doi.org/10.1002/path.5375
        • Talhouk A.
        • McConechy M.K.
        • Leung S.
        • et al.
        A clinically applicable molecular-based classification for endometrial cancers.
        Br J Canc. 2015; 113: 299-310
        • Murali R.
        • Davidson B.
        • Fadare O.
        • et al.
        High-grade endometrial carcinomas: morphologic and immunohistochemical features, diagnostic challenges and recommendations.
        Int J Gynecol Pathol. 2019; 38: S40-S63
        • Soslow R.A.
        • Tornos C.
        • Park K.J.
        • et al.
        Endometrial carcinoma diagnosis: use of FIGO grading and genomic subcategories in clinical practice: recommendations of the international society of gynecological pathologists.
        Int J Gynecol Pathol. 2019; 38: S64-S74
        • Pinto A.P.
        • Miron A.
        • Yassin Y.
        • et al.
        Differentiated vulvar intraepithelial neoplasia contains Tp53 mutations and is genetically linked to vulvar squamous cell carcinoma.
        Mod Pathol. 2010; 23: 404-412
        • Kortekaas K.E.
        • Solleveld-Westerink N.
        • Tessier-Cloutier B.
        • et al.
        Performance of the pattern based interpretation of p53 immunohistochemistry as a surrogate for TP53 mutations in vulvar squamous cell carcinoma.
        Histopathology. 2020 Apr 1; ([Epub ahead of print])https://doi.org/10.1111/his.14109
        • Watkins J.C.
        • Yang E.
        • Crum C.P.
        • et al.
        Classic vulvar intraepithelial neoplasia with superimposed lichen simplex chronicus: a unique variant mimicking differentiated vulvar intraepithelial neoplasia.
        Int J Gynecol Pathol. 2019; 38: 175-182
        • Hantschmann P.
        • Sterzer S.
        • Jeschke U.
        • Friese K.
        P53 expression in vulvar carcinoma, vulvar intraepithelial neoplasia, squamous cell hyperplasia and lichen sclerosus.
        Anti Canc Res. 2005; 25: 1739-1745
        • Singh N.
        • Leen S.L.
        • Han G.
        • et al.
        Expanding the morphologic spectrum of differentiated VIN (dVIN) through detailed mapping of cases with p53 loss.
        Am J Surg Pathol. 2015; 39: 52-60
        • Nascimento A.F.
        • Granter S.R.
        • Cviko A.
        • Yuan L.
        • Hecht J.L.
        • Crum C.P.
        Vulvar acanthosis with altered differentiation: a precursor to verrucous carcinoma?.
        Am J Surg Pathol. 2004; 28: 638-643
        • Watkins J.C.
        • Howitt B.E.
        • Horowitz N.S.
        • et al.
        Differentiated exophytic vulvar intraepithelial lesions are genetically distinct from keratinizing squamous cell carcinomas and contain mutations in PIK3CA.
        Mod Pathol. 2017; 30: 448-458
        • Preston B.D.
        • Albertson T.M.
        • Herr A.J.
        DNA replication fidelity and cancer.
        Semin Canc Biol. 2010; 20: 281-293
        • Hsieh P.
        • Zhang Y.
        The Devil is in the details for DNA mismatch repair.
        Proc Natl Acad Sci U S A. 2017; 114: 3552-3554
        • Haraldsdottir S.
        • Hampel H.
        • Tomsic J.
        • et al.
        Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations.
        Gastroenterology. 2014; 147: 1308-13016 e1
        • Lynch H.T.
        • Lynch P.M.
        • Lanspa S.J.
        • Snyder C.L.
        • Lynch J.F.
        • Boland C.R.
        Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications.
        Clin Genet. 2009; 76: 1-18
        • Stelloo E.
        • Jansen A.M.L.
        • Osse E.M.
        • et al.
        Practical guidance for mismatch repair-deficiency testing in endometrial cancer.
        Ann Oncol : Off J Eur Soc Med Oncol. 2017; 28: 96-102
        • Crosbie E.J.
        • Ryan N.A.J.
        • Arends M.J.
        • et al.
        The Manchester International Consensus Group recommendations for the management of gynecological cancers in Lynch syndrome.
        Genet Med. 2019 Oct; 21 ([Epub 2019 Mar 28]): 2390-2400https://doi.org/10.1038/s41436-019-0489-y
        • Moller P.
        • Seppala T.T.
        • Bernstein I.
        • et al.
        Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the Prospective Lynch Syndrome Database.
        Gut. 2018; 67: 1306-1316
        • Moller P.
        • Seppala T.
        • Bernstein I.
        • et al.
        Incidence of and survival after subsequent cancers in carriers of pathogenic MMR variants with previous cancer: a report from the prospective Lynch syndrome database.
        Gut. 2017; 66: 1657-1664
        • Sloan E.A.
        • Ring K.L.
        • Willis B.C.
        • Modesitt S.C.
        • Mills A.M.
        PD-L1 expression in mismatch repair-deficient endometrial carcinomas, including Lynch syndrome-associated and MLH1 promoter hypermethylated tumors.
        Am J Surg Pathol. 2017; 41: 326-333
        • Mills A.M.
        • Longacre T.A.
        Lynch syndrome screening in the gynecologic tract: current state of the art.
        Am J Surg Pathol. 2016; 40: e35-e44
        • Niu B.T.
        • Hammond R.F.L.
        • Leen S.L.S.
        • Gilks C.B.
        • Singh N.
        Two versus four immunostains for Lynch syndrome screening in endometrial carcinoma.
        Histopathology. 2019; 75: 442-445
        • Ryan N.
        • Wall J.
        • Crosbie E.J.
        • et al.
        Lynch syndrome screening in gynaecological cancers: results of an international survey with recommendations for uniform reporting terminology for mismatch repair immunohistochemistry results.
        Histopathology. 2019; 75: 813-824
        • Pearlman R.
        • Markow M.
        • Knight D.
        • et al.
        Two-stain immunohistochemical screening for Lynch syndrome in colorectal cancer may fail to detect mismatch repair deficiency.
        Mod Pathol. 2018; 31: 1891-1900
        • Niu B.T.
        • Hammond R.F.L.
        • Leen S.L.S.
        • et al.
        Artefactual punctate MLH1 staining can lead to erroneous reporting of isolated PMS2 loss.
        Histopathology. 2018; 73: 703-705
        • Loughrey M.B.
        • Dunne P.D.
        • Coleman H.G.
        • McQuaid S.
        • James J.A.
        Punctate MLH1 mismatch repair immunostaining in colorectal cancer.
        Histopathology. 2019; 74: 795-797
        • Zhang Q.
        • Young G.Q.
        • Yang Z.
        Pure discrete punctate nuclear staining pattern for MLH1 protein does not represent intact nuclear expression.
        Int J Surg Pathol. 2019; (1066896919878830)
        • Bartosch C.
        • Clarke B.
        • Bosse T.
        Gynaecological neoplasms in common familial syndromes (Lynch and HBOC).
        Pathology. 2018; 50: 222-237
        • Thompson E.F.
        • Chen J.
        • Huvila J.
        • et al.
        p53 Immunohistochemical patterns in HPV-related neoplasms of the female lower genital tract can be mistaken for TP53 null or missense mutational patterns.
        Mod Pathol. 2020; https://doi.org/10.1038/s41379-020-0527-y